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§4.1  An Introduction of Channel Coding

• Channel Coding: map a k-dimensional message vector to an n-dimensional codeword 

vector, and k < n.

• If it is a binary channel code, there are at most 2k n-dimensional codewords. The 

redundancy of 2n – 2k enables the error-correction capability of the code.

The n-dimensional binary space that can 

accommodate at most 2n binary vectors.

There are 2k n-dimensional codeword

vectors filling the space.

• Codebook Ȼ collects all codewords. It has a cardinality of |Ȼ| = 2k.



§4.1  An Introduction of Channel Coding

• Code rate (r): A ratio of code dimension k to codeword length n, i.e., 𝑟 =
𝑘

𝑛
. The 

redundancy is n – k. It underpins the efficiency in error-correction.

• Decoding:

Channel
ҧ𝑐 ത𝑦

Aim: with the received vector ത𝑦, we try to estimate ҧ𝑐. Let መҧ𝑐 denote the 

estimation produced by the decoder. The decoding can be categorized into 

three cases:

Case I: መҧ𝑐 = ҧ𝑐, correct decoding;

Case II: መҧ𝑐 ∈ Ȼ, but መҧ𝑐 ≠ ҧ𝑐, decoding error;

Case III: Decoder does not produce any outcome, decoding failure.



§4.1  An Introduction of Channel Coding

• A channel code is a specific capacity approaching operational strategy.

• Based on the encoder structure, channel codes can be categorized into block codes 

and convolutional codes.

1. Block codes:

k-symbol message                n-symbol codeword.
Enc.

• Encoder is memoryless and can be implemented with a 

combinatorial logic circuit.

• Linear Block Code: If ҧ𝑐𝑖 and ҧ𝑐𝑗 belong to a block code, ҧ𝑐′ =

𝑎 ∙ ҧ𝑐𝑖 + 𝑏 ∙ ҧ𝑐𝑗 also belongs to the block code. (𝑎, 𝑏) ∈ 𝔽𝑞 in 

which the block code is defined.

• Examples: Reed-Solomon code, algebraic-geometric code, 

Hamming code, low-density parity-check (LDPC) code.



§4.1  An Introduction of Channel Coding

Enc.

• Encoder has a memory of order m. It can be implemented 

with a sequential logic circuit.

• Examples: Convolutional code, Trellis coded 

modulation, Turbo code, Spatially-coupled LDPC code.



§4.2 Shannon’s Channel Coding Theorem

⚫ Shannon’s Channel Coding Theorem demonstrates error free transmission is 

possible by manipulating the code rate according to the channel capacity. It is 

defined in the mindset of binary transmission, e.g., BPSK.

Shannon’s Channel Coding Theorem: All rates below capacity 𝐶 are achievable. 

For every rate 𝑟 < 𝐶, there exists channel codes of length 𝑛 and dimension 𝑛𝑟, 

such that the maximum error probability 𝑃𝑒 → 0. Inversely, any such codes that 

realize 𝑃𝑒 → 0 must have rate 𝑟 < 𝐶.

⚫ Its proof involves the justification of achievability, i.e., if 𝑟 < 𝐶, 𝑃𝑒 → 0, and its 

converse, i.e., if 𝑃𝑒 → 0, 𝑟 < 𝐶. They require the assistance of Jointly Typical 

Sequences and Fano’s Inequality, respectively.



§4.2 Shannon’s Channel Coding Theorem

⚫ Empirical Entropy: Given an 𝑋 sequence 𝑋𝑛 𝑥𝑛: 𝑥1, 𝑥2, … , 𝑥𝑛 , its empirical entropy is

𝐻∗ 𝑋 = −
1

𝑛
log2 𝑃 𝑥𝑛

⚫ Similarly, given two sequences 𝑋𝑛 𝑥𝑛: 𝑥1, 𝑥2, … , 𝑥𝑛 and 𝑌𝑛 𝑦𝑛: 𝑦1, 𝑦2, … , 𝑦𝑛 , 

their joint empirical entropy is

⚫ If sequences 𝑋𝑛 and 𝑌𝑛 have the i.i.d. property, i.e.

𝑃 𝑥𝑛 =ෑ

𝑖=1

𝑛

𝑃 𝑥𝑖 𝑃 𝑥𝑛, 𝑦𝑛 =ෑ

𝑖=1

𝑛

𝑃 𝑥𝑖 , 𝑦𝑖

the above empirical entropies become

𝐻∗ 𝑋, 𝑌 = −
1

𝑛
log2 𝑃 𝑥𝑛, 𝑦𝑛

𝐻∗ 𝑋 = −
1

𝑛
෍

𝑖=1

𝑛

log2 𝑃 𝑥𝑖 𝐻∗ 𝑋, 𝑌 = −
1

𝑛
෍

𝑖=1

𝑛

log2 𝑃 𝑥𝑖 , 𝑦𝑖



§4.2 Shannon’s Channel Coding Theorem

⚫ Jointly Typical Sequences: Given 𝜖 → 0, 𝑥𝑛 and 𝑦𝑛 are jointly typical sequences if

𝐻∗ 𝑋 − 𝐻(𝑋) < 𝜖
𝐻∗ 𝑌 − 𝐻(𝑌) < 𝜖

𝐻∗ 𝑋, 𝑌 − 𝐻(𝑋, 𝑌) < 𝜖.

⚫  If 𝑥𝑛 and 𝑦𝑛 are drawn i.i.d. as

𝑃 𝑥𝑛, 𝑦𝑛 =ෑ

𝑖=1

𝑛

𝑃(𝑥𝑖 , 𝑦𝑖) ,

when 𝑛 → ∞, 

Pr(xn  and  yn  are jointly typical)  →  1.

 If  𝑧  𝑛  and  𝑦𝑛  are independent, as  𝑃  𝑧  𝑛,  𝑦𝑛  =  𝑃  𝑧  𝑛  𝑃  𝑦𝑛  ,

  Pr(zn  and  yn  are jointly typical)  ≤  2−𝑛(𝐼  𝑍;𝑌  −3𝜖).



§4.2 Shannon’s Channel Coding Theorem

⚫ Modelling and Assumptions of the Proof 

⚫ Codeword length 𝑛, dimension 𝑘 = 𝑛𝑟, message/codeword index 𝑤

⚫ Decoding error probability 𝑃 𝜖 = Pr ෝ𝑤 ≠ 𝑤

• Assumptions (A):

A-I: A random binary code is generated as

𝑃 Ȼ = ෑ

𝑤=1

2𝑛𝑟

𝑃(𝑐𝑛 𝑤 )

= ෑ

𝑤=1

2𝑛𝑟

ෑ

𝑖=1

𝑛

𝑃(𝑐𝑖 𝑤 ) .

Channel
𝑐𝑛(𝑤)

Encoder Decoder
𝑦𝑛𝑢𝑘(𝑤) 𝑢𝑘(ෝ𝑤)/𝑐𝑛(ෝ𝑤)



§4.2 Shannon’s Channel Coding Theorem

A-II: Both the transmitter and receiver know the channel, i.e., 𝑃 𝑦𝑖 𝑐𝑖 𝑤 , ∀𝑖.

A-III: Messages (codewords of Ȼ) are uniformly chosen for transmission as

𝑃 𝑢𝑘 𝑤 = 𝑃 𝑐𝑛 𝑤 =
1

2𝑛𝑟
.

A-IV: The channel is discrete memoryless, i.e.,

𝑃 𝑦𝑛 𝑐𝑛 𝑤 = ς𝑖=1
𝑛 𝑃(𝑦𝑖|𝑐𝑖 𝑤 ) .

Therefore,

𝑃 𝑐𝑛 𝑤 , 𝑦𝑛 = 𝑃 𝑦𝑛 𝑐𝑛 𝑤 𝑃 𝑐𝑛 𝑤

= ς𝑖=1
𝑛 𝑃(𝑦𝑖|𝑐𝑖 𝑤 ) ∙ς𝑖=1

𝑛 𝑃(𝑐𝑖 𝑤 )

= ς𝑖=1
𝑛 𝑃(𝑦𝑖 , 𝑐𝑖 𝑤 ).



Achievability Proof

⚫ Generate a random binary code of length n rate r as A-I.

The codebook Ȼ is

c1(1)      c2(1)     ⋯ cn(1)

c1(w)     c2(w)     ⋯ cn(w)

c1(2
nr)   c2(2

nr)    ⋯ cn(2
nr)

⋮ ⋮ ⋯ ⋮

⋮ ⋮ ⋯ ⋮
Ȼ = 

𝑃 Ȼ = ෑ

𝑤=1

2𝑛𝑟

ෑ

𝑖=1

𝑛

𝑃(𝑐𝑖(𝑤))

⚫ Based on A-III,

𝑃 𝑐𝑛 𝑤 =ෑ

𝑖=1

𝑛

𝑃(𝑐𝑖(𝑤)) =
1

2𝑛𝑟
.

⚫ With received vector 𝑦𝑛 , the decoder estimates codeword 𝑐𝑛 ෝ𝑤 such that 

• 𝑐𝑛 ෝ𝑤 and 𝑦𝑛 are jointly typical sequences.

• There is no other codeword 𝑐𝑛 𝑣 such that 𝑐𝑛 𝑣 and 𝑦𝑛 are jointly typical sequences. 

They are codewords

§4.2 Shannon’s Channel Coding Theorem



⚫ The decoding error probability is
𝑃 𝜖 = σȻ 𝑃 Ȼ 𝑃𝑒(Ȼ)

𝑃𝑒 Ȼ =
1

2𝑛𝑟
σ𝑤=1
2𝑛𝑟 𝑃𝑒,𝑤(Ȼ)

Prob. of a particular code Ȼ Error prob. of the code Ȼ

Error prob. of a particular codeword 𝑐𝑛(𝑤) ∈ Ȼ

𝑃 𝜖 =
1

2𝑛𝑟
σ

Ȼ
σ𝑤=1
2𝑛𝑟 𝑃 Ȼ 𝑃𝑒,𝑤(Ȼ)

⚫ Due to symmetry of code construction, we know
1

2𝑛𝑟
σ𝑤=1
2𝑛𝑟 𝑃𝑒,𝑤(Ȼ) = 𝑃𝑒,1(Ȼ)

⚫ Hence,
𝑃 𝜖 = σ

Ȼ 𝑃 Ȼ 𝑃𝑒,1(Ȼ)

= 𝑃𝑒,1

Average (over all codebooks) error prob. of codeword 𝑐𝑛(1)

§4.2 Shannon’s Channel Coding Theorem



• Let 𝐸𝑤 denote the event that codeword 𝑐𝑛 𝑤 (𝑋𝑛) and 𝑦𝑛 (𝑌𝑛) are jointly typical 

sequences.

𝑃 𝜖 = 𝑃𝑒,1

= Pr(𝐸1
𝐶 ∪ 𝐸2 ∪ 𝐸3 ∪⋯∪ 𝐸2𝑛𝑟)

≤ Pr 𝐸1
𝐶 + σ𝑤=2

2𝑛𝑟 Pr(𝐸𝑤)

Based on, where 𝑛 → ∞, Pr 𝐸1
𝐶 ≤ 𝜖.

Based  on  ,  Pr(𝐸𝑤  )  ≤  2−𝑛(𝐼  𝑋;𝑌  −3𝜖).

• Therefore,

𝑃  𝜖  ≤  𝜖  +  σ𝑤
2𝑛𝑟
=2  2

−𝑛(𝐼  𝑋;𝑌  −3𝜖)

=  𝜖  +  (2𝑛𝑟  −  1)  ∙  2−𝑛(𝐼  𝑋;𝑌  −3𝜖)

<  𝜖  +  23𝑛𝜖  2−𝑛(𝐼  𝑋;𝑌  −𝑟)

=  𝜖  +  2−𝑛(𝐼  𝑋;𝑌  −3𝜖−𝑟)

§4.2 Shannon’s Channel Coding Theorem



• If  n  is sufficiently large and  𝑟  <  𝐼  𝑋;  𝑌  −  3𝜖,

 𝑃  𝜖  ≤  2𝜖,

the decoding error probability can be arbitrarily small.

• Choose  𝑃(𝑐𝑖  (𝑤))  to be the distribution that maximizes  𝐼  𝑋;  𝑌  as

 𝐶  =  max  𝐼  𝑋;  𝑌  ,
𝑃(𝑐𝑖(𝑤))

§4.2 Shannon’s Channel Coding Theorem

the above conclusion implies if 𝑟 < 𝐶, the decoding error probability 𝑃 𝜖 can be 

arbitrarily small.                                                                Achievability Proof Ends

Remark: The achievability proof is founded on random code construction, large codeword 

length and ideal codeword symbol distributions. They become the features of capacity 

approaching (achieving) codes, i.e. Turbo codes, LDPC codes and Polar codes.



§4.2 Shannon’s Channel Coding Theorem

• Fano’s inequality

Over a DMC, given a code of rate 𝑟 with the input message uniformly distributed, let 

𝑃 𝜖 = Pr ෝ𝑤 ≠ 𝑤 ,

𝐻 𝑐𝑛 𝑦𝑛 ≤ 1 + 𝑃 𝜖 ∙ 𝑛𝑟. 

Proof: Extending the Fano’s inequality into vector domain,

𝐻 𝑐𝑛 𝑦𝑛 ≤ 𝐻 𝑃 𝜖 + 𝑃 𝜖 log 2𝑛𝑟 − 1

≤ 1 + 𝑃 𝜖 ∙ 𝑛𝑟.

Note: The 2nd inequality is realized with 𝑛 → ∞.

Channel
𝑐𝑛(𝑤)

Encoder Decoder
𝑦𝑛𝑢𝑘(𝑤) 𝑢𝑘(ෝ𝑤)/𝑐𝑛(ෝ𝑤)

• Converse of Shannon’s Channel Coding Theorem

If 𝑃 𝜖 → 0, 𝑟 ≤ 𝐶. 



§4.2 Shannon’s Channel Coding Theorem

Converse Proof

• Based on A-III, input messages are uniformly distributed.

𝐻 𝑢𝑘 𝑤 = log2𝑛𝑟 = 𝑛𝑟.

• Since 

𝐻 𝑢𝑘 𝑤 =  𝐻  𝑢𝑘  𝑤  |𝑦𝑛  +  𝐼(𝑢𝑘  𝑤  ;  𝑦𝑛)

where

H  𝑢𝑘  𝑤  𝑦𝑛  =  𝐻(𝑐𝑛  𝑤  |𝑦𝑛)

and based on Data Processing Inequality,

 𝐼  𝑢𝑘  𝑤  ;  𝑦𝑛  ≤  𝐼  𝑐𝑛  𝑤  ;  𝑦𝑛  .
we have

𝑛𝑟  =  𝐻  𝑢𝑘  𝑤  ≤  𝐻  𝑐𝑛  𝑤  |𝑦𝑛  +  𝐼  𝑐𝑛  𝑤  ;  𝑦𝑛  .



§4.2 Shannon’s Channel Coding Theorem

• Applying Fano’s Inequality

𝐻  𝑐𝑛  𝑤  |𝑦𝑛  ≤  1  +  𝑃  𝜖  ∙  𝑛𝑟.

• Over DMC and input being independent

𝐼  𝑐𝑛  𝑤  ;  𝑦𝑛  =  ෍
𝑖=1

𝑛

𝐼(𝑐𝑖  𝑤  ; 𝑦𝑖  )

= 𝑛 ∙ 𝐶.

Therefore,

𝑛𝑟 ≤ 1 + 𝑃 𝜖 𝑛𝑟 + 𝑛𝐶

𝑟 ≤ 𝑃 𝜖 𝑟 +
1

𝑛
+ 𝐶

With 𝑛 → ∞ and 𝑃 𝜖 → 0, 𝑟 ≤ 𝐶.                      

Converse Proof Ends



§4.3  Block Codes

⚫ All block codes are defined by their codeword length n, dimension k and the 

minimum Hamming distance d. A block code is often denoted as an (n, k, d) code.

⚫ Code rate: 𝑟 =
𝑘

𝑛
.

⚫ Encoding of a linear block code can be written as:

ҧ𝑐 = ത𝑢 ∙ 𝐆

ത𝑢 — k-dimensional message vector.

𝐆 — a generator matrix of size k × n. It defines the legal space among all n-dimensional  

vectors.   

ҧ𝑐 — n-dimensional codeword vector.

Linear block code:

ҧ𝑐1 = ത𝑢1 ∙ 𝐆

ҧ𝑐2 = ത𝑢2 ∙ 𝐆

(ത𝑢1 + ത𝑢2) ∙ 𝐆 = ( ҧ𝑐1 + ҧ𝑐2) ∈ Ȼ



𝑢 𝑢 𝑢 𝑢 𝑢 𝑢 𝑝 𝑝 𝑝 𝑝𝑢

Message

k = 7 bits long

Parity

n – k = 4 bits long

Codeword n = 11 bits long

𝑢 = message bits

𝑝 = parity-check bits

The Hamming Distance between any two codewords is the total number of positions

where the two codewords differ.

1 0 0 1 1 1 0 1

0 0 1 1 0 1 0 0

The total number of positions where

these two codewords differ is 4.

Therefore, the Hamming distance is 4.

§4.3  Block Codes

Hamming Distance

Weight: Given a vector, its weight is the number of nonzero positions.

1 0 0 1 1 1 0 1 The weight of the vector is 5.



• In general, a block code can correct up to 
𝑑−1

2
errors, where 𝑥 means that x is 

rounded down to the nearest integer, e.g.,  2.5 = 2.

• A block code can detect d – 1 errors.

A block code

can correct

received words

with up to 
𝑑−1

2

errors.

A block code can

detect up to d – 1 

errors

§4.3  Block Codes

The Minimum Hamming Distance and Error-Correction Capability

The minimum Hamming distance: for any two codewords ҧ𝑐𝑖 and ҧ𝑐𝑗 picked up from 

the codebook Ȼ, the minimum Hamming distance d is defined as:

𝑑 = min
( ҧ𝑐𝑖, ҧ𝑐𝑗)∈Ȼ

𝑑Ham( ҧ𝑐𝑖 , ҧ𝑐𝑗) .

• For a linear block code, 𝑑 = min{weight ҧ𝑐𝑗 , ҧ𝑐𝑗 ≠ 0}.



𝑢1

𝑐1 𝑐2 𝑐3 𝑐𝑛

A repetition encoder takes a single message bit and gives a codeword that is the message bit

repeated n times, where n is an odd number

A message bit 0 will be encoded to give the codeword 0000...000

A message bit 1 will be encoded to give the codeword 1111...111

• This is the simplest type of error-correcting code as it only has two codewords

• We can easily see that it has a minimum Hamming distance d = n

• It is an (n, 1, n) block code

The generator matrix of the code is simply

G = [1 1 1 1 ... 1]

Repetition Codes

§4.3  Block Codes



To recover the transmitted codeword of a repetition code, a simple decoder known as a

Majority Decoder can be used

1. The number of 0s and 1s in the received word are counted.

2. If the number of 0s > number of 1s (i.e., a majority) , then the message bit was a 0. 

Else if the number of 1s > number of 0s, then the message bit was a 1. 

Example 4.1: Say our message bit was a 1 and it was encoded by the (5, 1, 5) repetition code. 

The codeword will be ҧ𝑐 = (11111).

• If after transmission we receive the word ҧ𝑟 = (10011), then the number of 1s > number of 

0s and so the majority decoder decides that the original message was 1.

• However, if we receive the word ҧ𝑟 = (00011) then the number of 0s > number of 1s and the 

majority decoder incorrectly decides that the original message was 0.

In general, a (n, 1, n) repetition code can correct up to 
𝑛−1

2
errors.

§4.3  Block Codes

Repetition Codes



§4.3  Block Codes

Repetition Codes

The Great Wall



§4.3  Block Codes

Hamming Codes

⚫ Single-error-correcting codes.

⚫ Given any positive integer 𝑚 ≥ 3, its

𝑛 = 2𝑚 − 1

𝑘 = 2𝑚 −𝑚 − 1

𝑑 = 3

⚫ Example 4.2 : Given 𝑚 = 3, the generator matrix of the (7, 4, 3) Hamming code is 

𝐆 =

1 0 0 0
0 1 0 0

1 1 0
0 1 1

0 0 1 0
0 0 0 1

1 1 1
1 0 1

.

The codewords can be generated by ҧ𝑐 = ത𝑢 ∙ 𝐆.

This code can correct 1 error.



Notice that only 16 of 128 possible sequences of length 7 bits 

are used for transmission.

The parity bits are calculated by

1 1 3 4

2 1 2 3

3 2 3 4

p = u u u

p = u u u

p = u u u

 

 

 

ҧ𝑐

Remark: This is a systematic encoding as the message symbols 

appear in the codeword.

§4.3  Block Codes

11111111111

01011101110

00011011101

10111001100

10010111011

00110101010

01110011001

11010001000

00101110111

10001100110

11001010101

01101000100

01000110011

10100100010

10100010001

00000000000

111

u1 u2 u4u3

u1 u2 u4u3 p1 p2 p3

ത𝑢

The encoding can be written as

ҧ𝑐 = ത𝑢 ∙ 𝐆,

and

𝐆 =

1 0 0 0 1 1 0
0 1 0 0 0 1 1
0 0 1 0 1 1 1
0 0 0 1 1 0 1

.



• A cyclic code is a block code which has the property that cyclically shifting a 

codeword results in another codeword 

• Cyclic codes have the advantage that simple encoders can be constructed using shift 

registers and low complexity decoding algorithms exist to decode them 

• An (𝑛, 𝑘) cyclic code is constructed by first choosing a generator polynomial g(x) 

and multiplying this by a message polynomial m(x) to generate a codeword 

polynomial c(x) as

𝑐 𝑥 = 𝑢(𝑥) ∙ 𝑔(𝑥)

𝑢 𝑥 = 𝑢0 + 𝑢1𝑥 + ⋯+ 𝑢𝑘−1𝑥
𝑘−1

𝑔 𝑥 = 𝑔0 + 𝑔1𝑥 +⋯+ 𝑔𝑛−𝑘𝑥
𝑛−𝑘

𝑐 𝑥 = 𝑐0 + 𝑐1𝑥 + ⋯+ 𝑐𝑛−1𝑥
𝑛−1

§4.4  Cyclic Codes



This codeword polynomial corresponds to 1 1 1 0 0 1 0. However, notice that the 

first 4 bits of this codeword are not the same as the original message 1010.

𝑐(𝑥) = 𝑢(𝑥)𝑔(𝑥)
= (𝑥3 + 𝑥)(𝑥3 + 𝑥2 + 1)
= 𝑥6 + 𝑥5 + 𝑥4 + 𝑥3 + 𝑥3 + 𝑥
= 𝑥6 + 𝑥5 + 𝑥4 + 𝑥

[(x3 + x3) mod 2 = 2x3 mod 2 = 0]

§4.4  Cyclic Codes

Cyclic Hamming Code

• The (7, 4, 3) Hamming code is also a cyclic code that can be constructed using the 

generator polynomial 𝑔(𝑥) = 𝑥3 + 𝑥2 + 1.

• Example 4.3: To encode the binary message 1010, we first write it as the message 

polynomial 𝑢 𝑥 = 𝑥3 + 𝑥 and then multiply it with g(x) modulo-2

• This is an example of a non-systematic code.

Remark: Systematic encoding and non-systematic encoding only change the mapping 

between message and codeword, not the codebook.



1. For the first k = 4 message bits, switch 1 is closed and switch 2 is in position A

2. After the first 4 message bits have entered, switch 1 is open, switch 2 is in 

position B and the contents of memory elements are read out giving the parity-check bits

An encoder for the systematic (7, 4, 3) cyclic Hamming code

A

B

Switch 1

Switch 2

x x21

 

x3

Feedback

Input message symbol sequence



1010

𝐷0 𝐷1 𝐷2

§4.4  Cyclic Codes

Systematic Cyclic Hamming Code

• Encoding of a systematic cyclic Hamming code can be performed by shift-registers.



§4.4  Cyclic Codes

Example 4.4: Let the message be ത𝑢 = (𝑢1, 𝑢2, 𝑢3, 𝑢4), the shift register computes

Hence, p1 = u1⨁u3⨁u4

p2 = u1⨁u2⨁u3

p3 = u2⨁u3⨁u4

Input Registers (left to right)

u1 u1 0 u1

u2 u1⨁u2 u1 u1⨁u2

u3 u1⨁u2⨁u3 u1⨁u2 u2⨁u3

u4 u2⨁u3⨁u4 u1⨁u2⨁u3 u1⨁u3⨁u4

Update of the shift registers：

𝐹𝑒𝑒𝑑𝑏𝑎𝑐𝑘 = D2⨁Input

𝐷2
′ = 𝐷1 ⨁ 1 ∙ 𝐹𝑒𝑒𝑑𝑏𝑎𝑐𝑘

𝐷1
′ = 𝐷0 ⨁ 0 ∙ 𝐹𝑒𝑒𝑑𝑏𝑎𝑐𝑘

𝐷0
′ = 1 ∙ 𝐹𝑒𝑒𝑑𝑏𝑎𝑐𝑘

This is equivalent to the systematic encoding of Example 4.2.



When there are odd number of 1, 

the decoder (detector) knows error 

has been introduced.

§4.5 A Course Towards Decoding

• Given a received word 𝑦𝑛, decoding aims to recover codeword 𝑐𝑛(𝑤) (or message 

𝑢𝑘 𝑤 ), yielding its estimation (𝑐𝑛(ෝ𝑤))(or 𝑢𝑘(ෝ𝑤)).

• Error-Correction starts from error-detection.

• The Parity-Check Code: for each binary message, a parity-check bit is added so 

that there are an even number of 1s in each codeword.

If k = 3 then there are 8 possible messages. The eight codewords will be:

Channel
𝑐𝑛(𝑤)

Encoder Decoder
𝑦𝑛𝑢𝑘(𝑤) 𝑢𝑘(ෝ𝑤)/𝑐𝑛(ෝ𝑤)

000 → 0000

001 → 0011

010 → 0101

011 → 0110

100 → 1001

101 → 1010

110 → 1100

111 → 1111



Parity-Check Matrix

• A primitive thought: given a received word ҧ𝑟, we can search the whole codebook 

and find the codeword (message) that has the smallest Hamming distance to ҧ𝑟 .

But even for a binary code, this has a complexity of 𝑂 2𝑘 . This process is 

called the maximum likelihood (ML) decoding.

• Alternatively, we can utilize the algebraic structure of the code, which is often 

told by the parity-check matrix H.

• A parity-check matrix H is defined as the null space of the generator matrix G, 

i.e., the inner product of the two matrices results in an all-zero matrix, GHT = 0

(T is the transpose of the matrix)

• When a codeword is multiplied by the parity-check matrix, it should result in an 

all-zero vector, i.e.,

ҧ𝑐 ∙ 𝐇𝑇 = ത𝑢 ∙ 𝐆 ∙ 𝐇𝑇 = 0.

• If መҧ𝑐 ∙ 𝐇𝑇 = 0, it implies መҧ𝑐 is a valid codeword.

§4.5 A Course Towards Decoding

Syndrome vector.



• If the generator matrix is of the form 𝐆 = 𝐈𝑘 𝐏], where Ik is a k × k identity matrix and 

P is a parity matrix, the parity-check matrix is in the form of 𝐇 = 𝐏𝑇 𝐈𝒏−𝑘].

Example 4.5: Taking the (7, 4, 3) Hamming code in Example 4.2



















=

1011000

1110100

1100010

0110001

G

I4
P

















=

1001110

0100111

0011101

H

PT
In-k = I7-4 = I3

The parity-check

matrix is

Code

Dual code

Generator matrix

𝐆𝑘×𝑛

𝐆(𝑛−𝑘)×𝑛

Parity-check matrix

𝐇(𝑛−𝑘)×𝑛

𝐇𝑘×𝑛

§4.5 A Course Towards Decoding

• Dual code property



• Note that 

𝐆 ∙ 𝐇𝑇 = 𝐈𝑘 ⋮ 𝐏𝑘× 𝑛−𝑘 ∙ [
𝐏𝑘× 𝑛−𝑘

𝐈𝑘
]

= 𝐏𝑘× 𝑛−𝑘 + 𝐏𝑘× 𝑛−𝑘

= 0 𝑘× 𝑛−𝑘 .

For a pair of dual codes, their codewords are generated by ҧ𝑐 = ത𝑢 ∙ 𝐆, ҧ𝑐⊥ = ത𝑢′ ∙ 𝐇, 

where ത𝑢 ∈ 𝔽𝑞
𝑘, ത𝑢′ ∈ 𝔽𝑞

𝑛−𝑘.

Then 

ҧ𝑐 ∙ ( ҧ𝑐⊥)𝑇 = (ത𝑢 ∙ 𝐆) ∙ 𝐇𝑇 ∙ (ത𝑢′ 𝑇)

= ത𝑢 ∙ 𝐆 ∙ 𝐇𝑇 ∙ (ത𝑢′)𝑇

= 0.

G and H define two orthogonal vector spaces (of the same length).

§4.5 A Course Towards Decoding

⋯⋯⋯

• H can be constituted by 𝑛 − 𝑘 linearly independent codewords of an (𝑛, 𝑛 − 𝑘) code. 

• G can be constituted by 𝑘 linearly independent codewords of an (𝑛, 𝑘) code.



Example 4.5: Decoding of (7, 4, 3) Hamming code.

Assume the transmittal codeword is

ҧ𝑐 = 0 1 0 1 1 1 0 .

The received word is 

ҧ𝑟 = ҧ𝑐 + ҧ𝑒 = 0 1 0 1 0 1 0 .

( ҧ𝑒 = 0 0 0 0 1 0 0 is the error pattern.)

The syndrome is

ҧ𝑟 ∙ 𝐇𝑇 = ( ҧ𝑐 + ҧ𝑒) ∙ 𝐇𝑇 .                                                            

§4.5 A Course Towards Decoding

















=

1001110

0100111

0011101

H



ҧ𝑟 ∙ 𝐇𝑇 = ( ҧ𝑐 + ҧ𝑒) ∙ 𝐇𝑇

= ҧ𝑐 ∙ 𝐇𝑇 + ҧ𝑒 ∙ 𝐇𝑇

= ത0 + 0 0 0 0 1 0 0 ∙

1 1
0 1
1 1

0
1
1

1 0
1 0
0
0

1
0

1
0
0
1

= 1 0 0

§4.5 A Course Towards Decoding

=>  Column-4 of H. (Row-4 of 𝐇𝑇)

=>  𝑐4 = 𝑟4 + 1 = 1.

=>  መҧ𝑐 = 0 1 0 1 1 1 0 .

The syndrome is



Singleton Bound: Given an 𝑛, 𝑘 linear block code with minimum Hamming distance 𝑑, 

we have

𝑑 ≤ 𝑛 − 𝑘 + 1.
Proof:

⚫ For the code, its parity-check matrix 𝐇 𝑛−𝑘 ×𝑛 can be written as

𝐇 = [ തℎ1, തℎ2, … , തℎ𝑛].
Given a minimum weight codeword ҧ𝑐, it has a support of 𝑖1, 𝑖2, … , 𝑖𝑑 . Moreover, 

𝑐𝑖1 ∙
തℎ𝑖1
𝑇 + 𝑐𝑖2 ∙

തℎ𝑖2
𝑇 +⋯+ 𝑐𝑖𝑑 ∙

തℎ𝑖𝑑
𝑇 = ത0

Hence, there are at least 𝑑 column of H are linearly dependent.

⚫ For H, its row rank equals to its column rank.

Hence, there are at most 𝑛 − 𝑘 linearly independent columns in H. That says any 

𝑛 − 𝑘 + 1 columns of H are linearly dependent.

⚫ Therefore, 

𝑑 ≤ 𝑛 − 𝑘 + 1.

§4.5 A Course Towards Decoding

⚫ Otherwise if 𝑑 > 𝑛 − 𝑘 + 1, the minimum Hamming distance of the code will not be 𝑑.

Remark: If a code with 𝑑 = 𝑛 − 𝑘 + 1, it is a maximum distance separable (MDS) code.
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