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S 4.1 An Introduction of Channel Coding
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« Channel Coding: map a k-dimensional message vector to an n-dimensional codeword
vector, and k <n,
- Ifitis a binary channel code, there are at most 2Xn-dimensional codewords. The
redundancy of 2" — 2k enables the error-correction capability of the code.
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\\ There are 2Xn-dimensional codeword
vectors filling the space.

« Codebook ¢ collects all codewords. It has a cardinality of |Z] = 2k



S 4.1 An Introduction of Channel Coding

« Code rate (r): Aratio of code dimension k to codeword length n, i.e., r = % The
redundancy is n — k. It underpins the efficiency in error-correction.
 Decoding:

— ! Channel B AR

Aim: with the received vector ¥, we try to estimate ¢. Let ¢ denote the

estimation produced by the decoder. The decoding can be categorized into
three cases:

Case I: ¢ = ¢, correct decoding;
Case Il: ¢ € ¢, but ¢ # ¢, decoding error;
Case I11: Decoder does not produce any outcome, decoding failure.
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« Achannel code is a specific capacity approaching operational strategy.

« Based on the encoder structure, channel codes can be categorized into block codes
and convolutional codes.

1. Block codes:

Enc.
k-symbol message ——— n-symbol codeword.

« Encoder is memoryless and can be implemented with a
combinatorial logic circuit.

- Linear Block Code: If ¢; and ¢; belong to a block code, ¢" =
a-¢; + b - ¢; also belongs to the block code. (a, b) € [, In
which the block code is defined.

« Examples: Reed-Solomon code, algebraic-geometric code,
Hamming code, low-density parity-check (LDPC) code.
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2. Convolutional codes:

k-symbol message mn-symbol codeword.
m out of k symbols

k-symbol message —n-symbol codeword.

: m out of k symbols
k-symbol message n-symbol codeword.

» Encoder has a memory of order m. It can be implemented
with a sequential logic circuit.

« Examples: Convolutional code, Trellis coded
modulation, Turbo code, Spatially-coupled LDPC code.



§ 4.2 Shannon’s Channel Coding Theorem

Shannon’s Channel Coding Theorem: All rates below capacity C are achievable.
For every rate r < C, there exists channel codes of length n and dimension nr,
such that the maximum error probability P, — 0. Inversely, any such codes that

realize P, - 0 must have rate r < C.

« Shannon’s Channel Coding Theorem demonstrates error free transmission is
possible by manipulating the code rate according to the channel capacity. It is

defined in the mindset of binary transmission, e.g., BPSK.

. Its proof involves the justification of achievability, i.e., if r < C, P, = 0, and its

converse, i.e., iIf P, = 0, r < C. They require the assistance of Jointly Typical

Sequences and Fano’s Inequality, respectively.
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. Empirical Entropy: Given an X sequence X™(x™: x4, x5, ..., X5,), its empirical entropy is

H*(X) = —%logz P(x™)
. Similarly, given two sequences X™(x™: xq, x5, ..., xy) and Y (y™: y1, V5, .., V),
their joint empirical entropy is

1
H*(X,Y) = — E1og2 P(x™y™)

. If sequences X™ and Y™ have the i.i.d. property, i.e.
n n
P(x™) = l_[P(xi) P(x™ y™) = HP(Xi;yl')
i=1 =1
the above empirical entropies become

H(O=—- ) log:PG)  H'(Y) = == logy P(x;, 1)
i=1 i=1
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. Jointly Typical Sequences: Given € — 0, x™ and y™ are jointly typical sequences if

|[H*(X) —HX)| <e
|[H*(Y) —H(Y)| <e
|H*(X,Y) — HX, V)| < e.

. @ Ifx™and y™are drawn i.i.d. as
n
Penym = | [Pewyn,
i=1

when n - oo,
Pr(x" and y" are jointly typical) — 1.

@ If z™ and y™ are independent, as P(z™, y™) = P(z™) P(y™),

Pr(z" and y" are jointly typical) < 2 U(ZY)-3€),
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. Modelling and Assumptions of the Proof

uf(w) c"(w)

n uk (W) /c™(w
Y Decoder —()! ()

» Channel

» Encoder

. Codeword length n, dimension k = nr, message/codeword index w
. Decoding error probability P(e) = Pr(w # w)

* Assumptions (A):
A-I: Arandom binary code is generated as

2717'

P(C) = l_[ P(c"(W))

27’17"

-1 1_[ P(ci(w)).

w=1 i=
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A-11: Both the transmitter and receiver know the channel, i.e., P(y;|c;(w)), Vi.

A-I11: Messages (codewords of ¢) are uniformly chosen for transmission as
P (uk(w)) = P(c"(w)) = 2_1111’ .

A-1V: The channel is discrete memoryless, i.e.,
P(y"™c"W)) = [T~ Pilei(w)) .

Therefore,
P(c"(w),y™) = P(y™[c™(w)) P(c™(w))
= [li=1 PGilei(w)) - Tizq P(ci(w))
= [Tiz1 P(yi, ci(w)).
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Achievability Proof

. Generate a random binary code of length n rate r as A-I.

The codebook ¢ is
S c(1) (1)

¢ = Cl(;.N) Cz(.YV)

@M @M

an

c (1) <

Cn.(W) l

Cn(2™) -

P =] | ﬁp(ci (w))

w=1 i=1

. Based on A-llI,

I

— They are codewords

e

. 1
P(c*(w)) = HP(ci(w)) = Jnr-
i=1

. With received vector y™ , the decoder estimates codeword ¢™(w) such that

« ¢™(w) and y™ are jointly typical sequences.

« There is no other codeword c™(v) such that ¢c™(v) and y™ are jointly typical sequences.
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Prob. of a particular code ¢ Error prob. of the code ¢

P.(0) = =327, P (©)
o

2717"

Error prob. of a particular codeword c*(w) € ¢

P(e) = ﬁ2¢22nr P(C)Pe,w (€)
. Due to symmetry of code construction, we know
sznr Pew(€) = Pe1(0)

. Hence,
P(e) = 5 P(C) Pay (€)
= Pe,l

7_

Average (over all codebooks) error prob. of codeword ¢™(1)
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« Let E,, denote the event that codeword c™(w) (X™) and y™ (Y™) are jointly typical
seguences.

P(E) = Pe,l
= Pr(Ef UE, UE3 U --- U Enr)

2717"

< Pr(Elc) + Y=o Pr(Ey)

Based on @, where n > oo, Pr(Ef) < e.
Based on @, Pr(E,,) < 2 MU (X¥)=3€),
* Therefore,
P(e) < € + X2, 2 MUY =36)
— €+ (2 — 1) - 27 nUKN=36)
< € + 23nex—n(IXY)-1)

— e+ Z—n(I(X;Y)—Se—r)
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« If nissufficiently large and r < I(X;Y) — 3,

P(e) < 2¢,
the decoding error probability can be arbitrarily small.

« Choose P(c;(w)) to be the distribution that maximizes I(X;Y) as

C = max UX:V)},
P(c;(W))

the above conclusion implies if r < C, the decoding error probability P(e) can be

arbitrarily small. Achievability Proof Ends

Remark: The achievability proof is founded on random code construction, large codeword

length and ideal codeword symbol distributions. They become the features of capacity

approaching (achieving) codes, i.e. Turbo codes, LDPC codes and Polar codes.
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B N
¢ Converse of Shannon’s Channel Coding Theorem

If P(e) > 0, r <C.

y" uk (W) /c™ (W)

k
u (W) Decoder ——

———=| Encoder < (W)=

Channel

* Fano’s inequality

Over a DMC, given a code of rate r with the input message uniformly distributed, let
P(e) = Pr(w # w),

H(c"|y™) <1+ P(e) - nr.

Proof: Extending the Fano’s inequality into vector domain,
H(c"|y™) < H(P(e)) + P(e) log(2™ — 1)
<1+ P(e)-nr.
Note: The 2nd inequality is realized with n — oo,
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Converse Proof

- Based on A-IlI, input messages are uniformly distributed.
H (uk(w)) = log2™" = nr.
« Since
H (u*w)) = H@*W)ly™) + 1@k w); y™)
where
H(u*w)|y™) = H(c"(W)[y™)
and based on Data Processing Inequality,
I(uk(w); y") < I(c™(w);y").
we have
nr = H (u (W) < HE"w)ly™) +1(c"w); y™.



§ 4.2 Shannon’s Channel Coding Theorem

|
* Applying Fano’s Inequality

H(c*"(wW)|y™) <1+ P(e) - nr.

« Over DMC and input being independent
n
1 w)y™ = ) 1(GW); )
=1

1=
=n-C.

Therefore,
nr <14 P(e)nr + nC

1
rSP(e)r+E+C

Withn - oo and P(e) - 0,r < C.
Converse Proof Ends
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 All block codes are defined by their codeword length n, dimension k and the

minimum Hamming distance d. A block code is often denoted as an (n, k, d) code.

. Coderate:r = %

. Encoding of a linear block code can be written as:
c=u-G

u — k-dimensional message vector.
G — a generator matrix of size k x n. It defines the legal space among all n-dimensional
vectors.

¢ — n-dimensional codeword vector.
Linear block code:
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Hamming Distance

Codeword n = 11 bits long
A

u = message bits
p = parity-check bits

—~— Y
Message Parity
k = 7 bits long n —k = 4 bits long

The Hamming Distance between any two codewords is the total number of positions
where the two codewords differ.

1{0|0|1|1]1]0]|1 The total number of positions where
1 I 1 1 these two codewords differ is 4.
Therefore, the Hamming distance is 4.

o(fof1|j11012,0/(O0

Weight: Given a vector, its weight is the number of nonzero positions.

11002121 (1]0]1 The weight of the vector is 5.
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The Minimum Hamming Distance and Error-Correction Capability
The minimum Hamming distance: for any two codewords ¢; and ¢; picked up from
the codebook ¢, the minimum Hamming distance d is defined as:
d = min {dHam(Eir Ej)}
(Ci.Cj)E g1
* In general, a block code can correct up to [Tl errors, where | x| means that x is

rounded down to the nearest integer, e.g., |2.5] = 2.
* ADblock code can detect d — 1 errors.

A block code can
detectuptod -1
errors

A block code
can correct
received words

with up to l%'
errors.

»  Fora linear block code, d = min{weight (¢;), ¢; # 0}.
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Repetition Codes

A repetition encoder takes a single message bit and gives a codeword that is the message bit
repeated n times, where n is an odd number

A message bit O will be encoded to give the codeword 0000...000
A message bit 1 will be encoded to give the codeword 1111...111

« This is the simplest type of error-correcting code as it only has two codewords
« We can easily see that it has a minimum Hamming distance d = n
e [tisan (n, 1, n) block code

The generator matrix of the code is simply

T G=[1111..1]
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B
Repetition Codes

To recover the transmitted codeword of a repetition code, a simple decoder known as a
Majority Decoder can be used

1. The number of Os and 1s in the received word are counted.
2. If the number of Os > number of 1s (i.e., a majority) , then the message bit was a 0.
Else if the number of 1s > number of Os, then the message bit was a 1.

Example 4.1: Say our message bit was a 1 and it was encoded by the (5, 1, 5) repetition code.
The codeword will be ¢ = (11111).

 |If after transmission we receive the word = (10011), then the number of 1s > number of

Os and so the majority decoder decides that the original message was 1.
* However, if we receive the word 7 = (00011) then the number of Os > number of 1s and the

majority decoder incorrectly decides that the original message was O.

.- -1
In general, a (n, 1, n) repetition code can correct up to nT errors.
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Hamming Codes

« Single-error-correcting codes.
« Given any positive integer m = 3, its

n=2m"-1
k=2"-m-1
d=3

o Example 4.2 : Given m = 3, the generator matrix of the (7, 4, 3) Hamming code is
1 0 0 01 1 0

ocoOoR
o RO
==
_ O

1 1
1 1)
0 1

This code can correct 1 error.
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Notice that only 16 of 128 possible sequences of length 7 bits O}foo OOOOC 000
are used for transmission. 0001 0001 101
The parity bits are calculated by 0010 0010 111
p=u DU, du, 0011 0011 010
P, = U, &) u, &) U, 0100 0100 011

0101 0101 110

p.=U, DU, DU
SooE T s 0110 0110 100

Uy | Uy | Ug | Uy The encoding can be written as | 0111 0111 001
Y c=1u-G, 1000 1000 110
\§ and 1001 1001 011

0D 1000110 1010 1010 001
G=]0100011} 1011 1011 100

S B B It v ¥ 0010111 1100 1100 101
Uy | Uy U3 Uy pl p2 p3 _O 00110 1_ 1101 1101 000

1110 1110 010

Remark: This is a systematic encoding as the message symbols
1111 1111 111

appear in the codeword.
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« Acyclic code is a block code which has the property that cyclically shifting a
codeword results in another codeword

* Cyclic codes have the advantage that simple encoders can be constructed using shift
registers and low complexity decoding algorithms exist to decode them

« An (n, k) cyclic code is constructed by first choosing a generator polynomial g(x)
and multiplying this by a message polynomial m(x) to generate a codeword
polynomial c(x) as

c(x) =u(x) - g(x)

u(x) = ug + ugx + -+ up_x*1

n—=k

gx) =go+g1x+ -+ gn_gx

c(x) =co+cyx + -+ cpoqx™!
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Cyclic Hamming Code

« The (7, 4, 3) Hamming code is also a cyclic code that can be constructed using the
generator polynomial g(x) = x3 + x? + 1.
« Example 4.3: To encode the binary message 1010, we first write it as the message
polynomial u(x) = x3 + x and then multiply it with g(x) modulo-2
c(x) = u(x)g (x)
= (x +x)(x + x? +1)

o+ x>+ x*+x3+x3+x [+ x3) mod2=2x3mod 2 =0]
=xb+x>+x*+x

This codeword polynomial correspondsto 1110 0 1 0. However, notice that the
first 4 bits of this codeword are not the same as the original message 1010.

« This is an example of a non-systematic code.

Remark: Systematic encoding and non-systematic encoding only change the mapping
between message and codeword, not the codebook.
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Systematic Cyclic Hamming Code
* Encoding of a systematic cyclic Hamming code can be performed by shift-registers.

. X X2 X3
O¢—O——
Switch 1
1 0—@5 L{%@ ke Feedback
_/I\
vd VA v
B
A
Input message symbol sequence v O‘/'_'
> Switch 2

1010
An encoder for the systematic (7, 4, 3) cyclic Hamming code

1.  For the first k = 4 message bits, switch 1 is closed and switch 2 is in position A
2.  After the first 4 message bits have entered, switch 1 is open, switch 2 is in
position B and the contents of memory elements are read out giving the parity-check bits



§ 4.4 Cyclic Codes

1 x2 +3

x <4
L Switch 1
1_,@@ Lé L{é Feedback
L

- Dy Dy —4~ D, E@l
B
A
Example 4.4: Let the message be u = (uq, u,, us, uy), the shift register computes
Input Registers (left to right) Update of the shift registers:

U, U, 0 U,

U, u,®u, U, u,®u, Feedback = D,@Input

U, u,®u,dus, u,®u, u,Bus, D, =D, ®1- Feedback
U, u,u.du,  u,Mu,Bu, u,u.du, D; =D, ® 0 - Feedback

Hence, p; = u;®u;®u, Dy =1-Feedback

P, = U;DU,DUu;
P3 = U,DuzBUu,
This is equivalent to the systematic encoding of Example 4.2.
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uf(w)

y" uk(w)/c™ (W)

n
c-(w) > Decoder —

A 4

Channel

Encoder

» Given a received word y™, decoding aims to recover codeword c™(w) (or message

uf(w)), yielding its estimation (c™(W))(or u*(Ww)).

* Error-Correction starts from error-detection.

« The Parity-Check Code: for each binary message, a parity-check bit is added so

that there are an even number of 1s in each codeword.

If k = 3 then there are 8 possible messages. The eight codewords will be:

000 — 0000
001 — 0011
010 — 0101
011 — 0110

100 — 1001 When there are odd number of 1,
101 — 1010 the decoder (detector) knows error
110 — 1100 has been introduced.

111 — 1111
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|
Parity-Check Matrix

« A primitive thought: given a received word 7, we can search the whole codebook
and find the codeword (message) that has the smallest Hamming distance to 7.
But even for a binary code, this has a complexity of 0(2"). This process is

called the maximum likelihood (ML) decoding.

 Alternatively, we can utilize the algebraic structure of the code, which is often
told by the parity-check matrix H.

« A parity-check matrix H is defined as the null space of the generator matrix G,
i.e., the inner product of the two matrices results in an all-zero matrix, GH™ =0
(T is the transpose of the matrix)

« When a codeword is multiplied by the parity-check matrix, it should result in an
all-zero vector, i.e.,

c-H' =u-G-H" =0.
- If¢-HT =0, itimplies ¢ is a valid codeword. *—Syndrome vector.
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If the generator matrix is of the form G = [I | P], where I, is a k X k identity matrix and
P is a parity matrix, the parity-check matrix is in the form of H = [PT | I,_].

Example 4.5: Taking the (7, 4, 3) Hamming code in Example 4.2

I4 P PT n-k
N /
(1 0 0 0:1 1 O]  The parity-check _\A | j _
01005011 matrix is 1011§100
G=00105111 y» H=1 110010
000 110 1 011170001
 Dual code property
Generator matrix Parity-check matrix

Code Grxn >< H(n—k)Xn
Dual code

G(n—k)xn Hkxn
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[ ]
« Note that

G-HT = [[k : ka(n_k)] q| HE

= |Pix(n—k) + Prex(n-i)]
= [O]kx(n—k)-
For a pair of dual codes, their codewords are generated by ¢ =% - G, ¢+ = @' - H,
where # € FE, u' € Fi~%.
Then
c-E@'=@-6-H-@)")
=u-G-H'-(@)T
= 0.
G and H define two orthogonal vector spaces (of the same length).
« H can be constituted by n — k linearly independent codewords of an (n,n — k) code.
« G can be constituted by k linearly independent codewords of an (n, k) code.
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Example 4.5: Decoding of (7, 4, 3) Hamming code.

1011;100'
H=|1 11 0'0 1 0
01 11:00 1

Assume the transmittal codeword is
c=(0101110).
The received word is
r=c+ée=(0101010).
(e=(0000100) isthe error pattern.)

The syndrome is

r-H =(c+é&)-H".
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The syndrome is

r-H =(c+é&)-HT
=c-H' +e-HT

=0+(0000100)-

O OR RRER O R
OROOR M
_ OO R RO

=(100)

=> Column-4 of H. (Row-4 of HT)
=>c,=1n+1=1
=>¢=(0101110).
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Singleton Bound: Given an (n, k) linear block code with minimum Hamming distance d,

we have

d<n-—k+1.
Proof:
. For the code, its parity-check matrix H (k) xn Can be written as
= [ hy, hy, ..., hy].

Given a minimum weight codeword C, it has a support of {i,, i,, ..., i;}. Moreover,
¢, ~hi +cy, hi +-+c,-hi, =0
Hence, there are at least d column of H are linearly dependent
. For H, its row rank equals to its column rank.
Hence, there are at most n — k linearly independent columns in H. That says any
n — k + 1 columns of H are linearly dependent.

. Therefore,

d<n-k+1.

. Otherwise if d > n — k + 1, the minimum Hamming distance of the code will not be d.

Remark: If a code with d = n — k + 1, it is a maximum distance separable (MDS) code.
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